
In this activity you will explore what graphs of the type y = mx + c look like with different values of m and c.

Information sheet

A Coordinates

The position of a point on a graph is given by two coordinates, x and y, where x is the horizontal coordinate and y is the vertical coordinate.

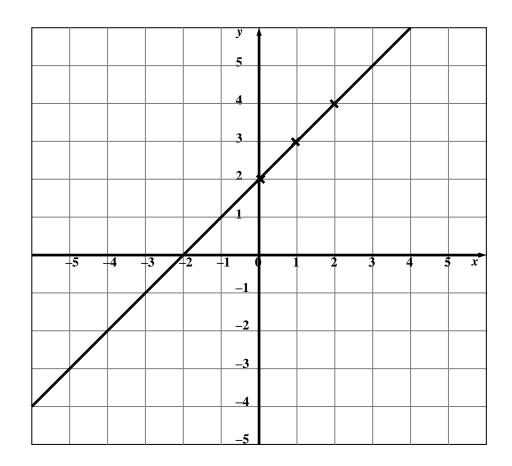
For example (2, 5) is the point with x coordinate 2 and y coordinate 5. This point is show on the graph below. This also shows the positions of the points (2, -5), (-2, 5) and (-2, -5)

B Graphs of equations of the form y = x + c

Equations involving *x* and *y* represent straight lines or curves.

To find the position of a line or curve, draw up a table of values that satisfy the equation and use these to plot points on a graph. Joining the points gives the line or curve.

Equations of the form y = mx + c, where m and c are positive or negative constants, always give **straight lines**.


Example y = x + 2

To draw the line:

- Choose 3 values for x.
- Work out the corresponding values for y.
- Plot the points on a graph.
- Join the points with a straight line.
- Label the line with its equation.

For y = x + 2

х	0	1	2
ν	2	3	4

y = x + 2

Think about

Why don't we just plot 2 points?

Try these

Use the equations to complete the tables below.

Draw the lines on the graph above. Remember to label each line.

$$y = x + 1$$

0	1	2	

$$y = x + 3$$

$$y = x - 1$$

х	1	2	3
у			

$$y = x - 2$$

Х	2	3	4
у			

Think about

What happens to each graph as the value of c, the constant, changes?

C Graphs of equations of the form y = mx

Example

$$y = 3x$$

y -3 0 3 y 5 4 3 2 1 -5 -4 -3 -2 -1 1 2 3 4	
3	
-5 -4 -3 -2 -1 1 2 3 4	
	5 x
-4	
y = 3x	

Try these

Use the equations to complete the tables below.

Draw the lines on the graph above. Remember to label each line.

$$y = 2x$$

$$y = -2x$$

$$y = -3x$$

$$y = 0.5x$$

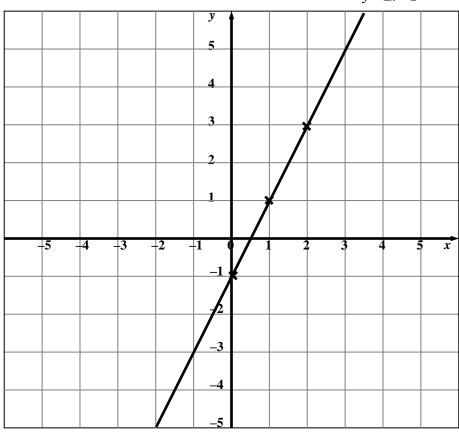
Х	0	1	2
у			

Х	0	1	2
у			

х	-1	0	1
у			

X	0	2	4
у			

Think about


What happens to each graph as the value of m, called the gradient, changes?

D Graphs of equations of the form y = mx + c

Example y = 2x - 1

x	0	1	2
у	- 1	1	3

Note that you could find the position of a line using just two points, but it is advisable to plot at least one more point as a check.

Try these

Use the equations to complete the tables below.

Draw the lines on the graph above. Remember to label each line.

$$y = 2x + 1$$

$$y = 2x - 3$$

х	0	1	2
у			

$$y = 3x - 1$$

Х	0	1	2
y			

$$y = 0.5x - 1$$

Х	0	2	4
у			

Reflect on your work

Explain to your partner what the values m and c stand for in the equation y = mx + c.

For example, in the equation y = 2x + 1, what do the '2' and the '1' tell you about the graph?